4 เดือน เฉลี่ยเคลื่อนที่ คาดการณ์
Moving Average ตัวอย่างนี้สอนวิธีการคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดข้อมูลเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้จุดสูงสุดและที่ราบสูงเป็นไปอย่างราบรื่นเพื่อให้ทราบถึงแนวโน้มต่างๆได้ง่ายขึ้นอันดับแรกลองดูที่ชุดข้อมูลเวลาของเรา คลิกการวิเคราะห์ข้อมูลคลิกที่นี่เพื่อโหลด Add-In Toolkit การวิเคราะห์ 3 เลือก Moving Average และคลิก OK.4 คลิกในกล่อง Input Range และเลือกช่วง B2 M2 5. คลิกที่ช่อง Interval และพิมพ์ 6.6 คลิกที่ Output Range และเลือกเซลล์ B3.8 วาดกราฟของค่าเหล่านี้การอธิบายเนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและ จุดข้อมูลปัจจุบันเป็นผลให้ยอดและหุบเขาถูกทำให้ราบเรียบกราฟแสดงแนวโน้มการเพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกเนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้มากพอ 9 ทำซ้ำตามขั้นตอนที่ 2 ถึง 8 สำหรับช่วง 2 และช่วงเวลา 4. บทสรุป The la rger ช่วงเวลายิ่งยอดและหุบเขาจะเรียบขึ้นช่วงเวลาที่มีขนาดเล็กยิ่งใกล้กับค่าเฉลี่ยเคลื่อนที่จะเป็นจุดข้อมูลที่แท้จริงการคาดการณ์ในระดับปานกลางการคาดการณ์ขณะที่คุณอาจคาดเดาเรากำลังมองหาแนวทางที่ดั้งเดิมที่สุด แต่หวังว่าสิ่งเหล่านี้จะแนะนำอย่างคุ้มค่าสำหรับปัญหาด้านคอมพิวเตอร์บางส่วนที่เกี่ยวข้องกับการคาดการณ์ในสเปรดชีตในหลอดเลือดดำนี้เราจะดำเนินต่อไปโดยเริ่มจากจุดเริ่มต้นและเริ่มต้นทำงานกับการคาดการณ์เฉลี่ยเคลื่อนที่โดยเฉลี่ยการคาดการณ์เฉลี่ยทุกคนคุ้นเคยกับการย้าย การคาดการณ์โดยเฉลี่ยไม่ว่าพวกเขาจะเชื่อหรือไม่ว่านักศึกษาวิทยาลัยทุกคนทำแบบฝึกหัดตลอดเวลาคิดเกี่ยวกับคะแนนการทดสอบของคุณในหลักสูตรที่คุณกำลังจะมีการทดสอบสี่ครั้งระหว่างภาคการศึกษา Let s สมมติว่าคุณมี 85 คนในการทดสอบครั้งแรกของคุณ คุณคาดการณ์คะแนนทดสอบที่สองคุณคิดว่าครูของคุณจะคาดการณ์คะแนนทดสอบต่อไปคุณคิดว่าเพื่อนของคุณอาจเป็นอย่างไร dict สำหรับคะแนนการทดสอบต่อไปคุณคิดว่าพ่อแม่ของคุณอาจคาดเดาคะแนนการทดสอบต่อไปของคุณได้โดยไม่คำนึงถึงการทำร้ายทั้งหมดที่คุณอาจทำกับเพื่อนและผู้ปกครองของคุณพวกเขาและครูของคุณมีแนวโน้มที่จะคาดหวังว่าคุณจะได้รับอะไรบางอย่างใน พื้นที่ของ 85 ที่คุณเพิ่งได้ดีตอนนี้ให้สมมติว่าแม้จะมีการโปรโมตตัวเองให้กับเพื่อน ๆ ของคุณคุณจะประเมินตัวเองและคิดว่าคุณสามารถเรียนได้น้อยกว่าสำหรับการทดสอบที่สองและเพื่อให้คุณได้รับ 73. ตอนนี้ ทุกคนมีความกังวลและไม่แยแสที่จะคาดหวังว่าคุณจะได้รับการทดสอบที่สามของคุณมีสองวิธีที่เป็นไปได้มากสำหรับพวกเขาในการพัฒนาประมาณการโดยไม่คำนึงว่าพวกเขาจะแบ่งปันกับคุณหรือไม่พวกเขาอาจพูดกับตัวเองว่าผู้ชายคนนี้มักจะเป่า สูบบุหรี่เกี่ยวกับสมาร์ทของเขาเขาจะได้รับอีก 73 ถ้าเขาโชคดีอาจเป็นพ่อแม่จะพยายามที่จะสนับสนุนมากขึ้นและพูดว่าดีเพื่อให้ห่างไกลคุณได้รับ 85 และ 73 ดังนั้นบางทีคุณควรจะคิดเกี่ยวกับการเกี่ยวกับ 85 73 2 79 ฉันไม่ทราบบางทีถ้าคุณทำปาร์ตี้น้อยและ ไม่มีการพ่ายพังพอนไปทั่วสถานที่และถ้าคุณเริ่มต้นทำมากขึ้นการศึกษาที่คุณจะได้รับคะแนนสูงกว่าทั้งสองประมาณการเหล่านี้เป็นจริงการคาดการณ์เฉลี่ยโดยเฉลี่ยก่อนใช้เฉพาะคะแนนล่าสุดของคุณในการคาดการณ์ประสิทธิภาพในอนาคตของคุณ เรียกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยใช้ช่วงเวลาหนึ่งของข้อมูลประการที่สองเป็นค่าพยากรณ์เฉลี่ยเคลื่อนที่ แต่ใช้สองช่วงของข้อมูลสมมติว่าคนเหล่านี้ทั้งหมด busting ในใจที่ดีของคุณมีการจัดเรียงของ pissed คุณปิดและคุณตัดสินใจที่จะทำ ดีในการทดสอบที่สามด้วยเหตุผลของคุณเองและจะนำคะแนนที่สูงขึ้นในด้านหน้าของพันธมิตรของคุณคุณจะทดสอบและคะแนนของคุณเป็นจริง 89 ทุกคนรวมทั้งตัวคุณเองเป็นที่ประทับใจตอนนี้คุณมีการทดสอบครั้งสุดท้ายของภาคการศึกษาที่มา ขึ้นและตามปกติคุณรู้สึกจำเป็นที่จะต้องกระตุ้นให้ทุกคนในการคาดการณ์ของพวกเขาเกี่ยวกับวิธีการที่คุณจะทำในการทดสอบครั้งสุดท้ายดีหวังว่าคุณจะเห็นรูปแบบตอนนี้หวังว่าคุณจะเห็นรูปแบบที่คุณเชื่อว่าเป็นที่ถูกต้องที่สุด Histl ขณะที่เราทำงานตอนนี้เรากลับไปที่ บริษัท ทำความสะอาดแห่งใหม่ซึ่งเริ่มต้นโดยพี่สาวที่แยกกันอยู่ของคุณชื่อ Whistle ขณะที่เราทำงานคุณมีข้อมูลการขายในอดีตที่แสดงโดยส่วนต่อไปนี้จากสเปรดชีตก่อนอื่นเราจะนำเสนอข้อมูลสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ย้อนหลัง 3 ช่วง รายการสำหรับเซลล์ C6 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C7 ถึง C11.Notice ค่าเฉลี่ยของการเคลื่อนย้ายข้อมูลทางประวัติศาสตร์ล่าสุด แต่ใช้ระยะเวลาสามงวดล่าสุดสำหรับการคาดการณ์แต่ละครั้ง สังเกตเห็นว่าเราไม่จำเป็นต้องทำการคาดการณ์ในช่วงที่ผ่านมาเพื่อที่จะพัฒนาการคาดการณ์ล่าสุดของเราซึ่งแน่นอนว่าแตกต่างจากแบบจำลองการทำให้เรียบที่อธิบายไว้ก่อนหน้านี้ซึ่งรวมถึงการคาดการณ์ที่ผ่านมาเนื่องจากเราจะใช้ข้อมูลเหล่านี้ในหน้าเว็บถัดไปเพื่อวัดผล ทำนาย validity. Now ฉันต้องการที่จะนำเสนอผลที่คล้ายคลึงกันสำหรับระยะเวลาสองคาดการณ์การเคลื่อนไหวเฉลี่ยรายการสำหรับเซลล์ C5 ควรจะเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ ลงไปที่เซลล์อื่น ๆ C6 ถึง C11.Notice ตอนนี้เพียงสองชิ้นล่าสุดของข้อมูลทางประวัติศาสตร์ที่ใช้สำหรับการคาดการณ์แต่ละครั้งที่ฉันได้รวมการคาดการณ์ที่ผ่านมาเพื่อเป็นตัวอย่างและเพื่อใช้ในภายหลังในการตรวจสอบการคาดการณ์สิ่งอื่น ๆ ที่มี ความสำคัญที่จะต้องแจ้งให้ทราบล่วงหน้าสำหรับการคาดการณ์ค่าเฉลี่ยของระยะเวลา m-m เฉพาะค่าข้อมูลล่าสุดของ m ที่ใช้เพื่อทำให้การคาดการณ์ไม่มีสิ่งใดที่จำเป็นสำหรับระยะเวลาการเคลื่อนที่โดยเฉลี่ยของ m-period เมื่อทำการคาดการณ์ที่ผ่านมาสังเกตว่าการทำนายครั้งแรกเกิดขึ้น ในช่วง m 1. ปัญหาเหล่านี้จะมีความสำคัญมากเมื่อเราพัฒนาโค้ดของเราการพัฒนาฟังก์ชัน Average Moving ตอนนี้เราจำเป็นต้องพัฒนาโค้ดสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่สามารถใช้งานได้อย่างคล่องตัวมากขึ้นโค้ดดังต่อไปนี้สังเกตว่า input เป็น สำหรับจำนวนรอบระยะเวลาที่คุณต้องการใช้ในการคาดการณ์และอาร์เรย์ของค่าทางประวัติศาสตร์คุณสามารถเก็บไว้ในสมุดงานที่คุณต้องการใด ๆ MovementAverage ฟังก์ชันประวัติศาสตร์ NumberOfPeriods เป็นบาป gle การประกาศและการเริ่มต้นตัวแปร Dim Item As Variant Dim Counter เป็นจำนวนเต็ม Integer Dim เป็น Single Dim HistoricalSize As Integer Initializing variables Counter 1 Accumulation 0 การกำหนดขนาดของอาร์เรย์ HistoricalSize. For สำหรับ Counter 1 ถึง NumberOfPeriods สะสมจำนวนที่เหมาะสมของค่าที่สังเกตก่อนหน้านี้สะสมสะสมข้อมูลประวัติ HistoricalSize - NumberOfPeriods Counter. MovingAverage การสะสม NumberOfPeriods รหัสจะอธิบายในชั้นเรียนคุณต้องการวางตำแหน่งฟังก์ชันในสเปรดชีตเพื่อให้ผลของการคำนวณปรากฏขึ้นที่ควร เช่นเดียวกับต่อไปนี้พัฒนาแบบจำลองการพยากรณ์อากาศเฉลี่ย 4 เดือนสำหรับวอลเลซการ์เด้นซัพพลายและคำนวณ MAD พัฒนาแบบจำลองการพยากรณ์อากาศเฉลี่ย 4 เดือนสำหรับวอลเลซการ์เด้นซัพพลายและคำนวณ MAD คำอธิบาย ENCLUDES EXCEL SPREADSHEET WITH FORMULAS.5-13 พัฒนา การพยากรณ์อากาศเฉลี่ย 4 เดือนสำหรับวอลเลซการ์เด้นซัพพลายและคำนวณค่า MAD การพยากรณ์ค่าเฉลี่ยเคลื่อนที่ 3 เดือนได้รับการพัฒนาขึ้นในส่วนของค่าเฉลี่ยเคลื่อนที่ในตารางที่ 5 3.5-15 ข้อมูลที่เก็บรวบรวมเกี่ยวกับความต้องการใช้ถุงปุ๋ย 50 ปอนด์ต่อปริมาณของวอลเลซการ์เด้นซัพพลายคือ แสดงในตารางต่อไปนี้พัฒนาค่าเฉลี่ยเคลื่อนที่สามปีเพื่อคาดการณ์การขายแล้วประมาณ ต้องการอีกครั้งกับค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักซึ่งยอดขายในปีล่าสุดจะได้รับน้ำหนัก 2 และยอดขายในอีก 2 ปีจะได้รับน้ำหนัก 1 วิธีใดที่คุณคิดว่าเป็นสิ่งที่ดีที่สุด YEAR DEMAND FOR FERTILIZER.5 - 16 พัฒนาสายแนวโน้มสำหรับความต้องการปุ๋ยในปัญหา 5-15 โดยใช้ซอฟต์แวร์คอมพิวเตอร์ 5-19 การขายเครื่องปรับอากาศ Cool Man ได้เติบโตขึ้นอย่างต่อเนื่องในช่วง 5 ปีที่ผ่านมาผู้จัดการฝ่ายขายคาดการณ์ก่อนที่ธุรกิจจะเริ่มต้น ยอดขายในปีนี้จะเป็น 410 เครื่องปรับอากาศโดยใช้การเพิ่มความล้าสมัยที่มีน้ำหนัก 0 30 การคาดการณ์สำหรับปีที่ 2 ถึง 6.5-25 การขายเครื่องดูดฝุ่นอุตสาหกรรมที่ บริษัท R Lowenthal Supply ในช่วง 13 เดือนที่ผ่านมามีดังต่อไปนี้ 1,000 ขาย 1,000 เดือน 11. มกราคม 14 สิงหาคม 14.4 กุมภาพันธ์ 17 กันยายน. 16 มีนาคม 12 ตุลาคม 10 เมษายน 14 พฤศจิกายน. 15 พฤษภาคม 16 ธันวาคม. 17 มิถุนายน 11 มกราคม a การใช้ค่าเฉลี่ยเคลื่อนที่ที่มีระยะเวลาสามช่วงกำหนดความต้องการเครื่องดูดฝุ่นในเดือนกุมภาพันธ์ปีถัดไป b ใช้ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักสามช่วงเวลากำหนดความต้องการเครื่องดูดฝุ่นในเดือนกุมภาพันธ์ c ประเมินความถูกต้องของแต่ละวิธีการเหล่านี้ d ปัจจัยอื่น ๆ ที่ R Lowenthal สามารถพิจารณาในการพยากรณ์ยอดขายได้ซื้อ 14 ครั้งจากการให้คะแนน 4 จาก 7 จาก 5 รีวิวจากลูกค้า 3 ราย
Comments
Post a Comment